“CULTIVOS DE COBERTURA DE AVENA Y CENTENO: EFECTO DE LA FERTILIZACIÓN NITROGENADA Y MOMENTO DE QUEMADO SOBRE LA EFICIENCIA DE USO DEL AGUA, RELACIÓN CARBONO NITRÓGENO Y CONTROL DE MALEZAS”

Trabajo final de graduación para obtener el título de Ingeniero Agrónomo

Autores:

Raspo, Cristian
Tassone, Leandro J.

Director:

Riestra, Diego René - Agrotécnia

Evaluadores:

Fernández, Miguel Ángel - Agrotécnia
Aimar, Darío – Hidrología agrícola

FACULTAD DE AGRONOMÍA - UNIVERSIDAD NACIONAL DE LA PAMPA
SANTA ROSA - LA PAMPA - ARGENTINA – 2016
ÍNDICE

Resumen 2
Introducción 3
 Hipótesis 8
Materiales y métodos 10
 Descripción del área de estudio 10
 Descripción del ensayo 11
 Diseño experimental 12
 Determinaciones 12
 Determinaciones de propiedades edáficas 12
 Determinaciones en cultivo 13
 Medición de los parámetros estudiados 13
 Labores realizadas 15
 Análisis estadístico 15
Resultados y discusión 16
 Caracterización climática y edáfica del sitio 16
 Humedad del suelo 16
 Producción de materia seca 20
 Materia orgánica del suelo 26
 Relación C/N 27
Conclusiones 29
Anexo 31
Bibliografía 34
RESUMEN

La veranización de la agricultura a base del cultivo de soja ha significado una reducción en el aporte de residuos y contenidos de materia orgánica (MO) del suelo, limitando la captación, retención y eficiencia en el uso del agua (EUA). Por otra parte, los barbechos químicos invernales a base de Glifosato han generado resistencia y tolerancia en algunas malezas. En este contexto, la inclusión de cultivos de cobertura (CC) sería una alternativa viable por su aporte de residuos en superficie atenuando la pérdida de MO, mejorando la EUA y contribuyendo al control de malezas.

El objetivo del trabajo fue evaluar producción de materia seca, EUA, MO del suelo, relación C/N y control de malezas bajo CC de avena y centeno. El estudio fue realizado en la Facultad de Agronomía de la UNLPam. Se valoraron dos fechas de secado y dos tratamientos de fertilización nitrogenada. También se incluyó un barbecho químico siempre limpio y otro sin control químico. El diseño utilizado fue en bloque completos aleatorizados con 4 repeticiones.

El CC de centeno presentó mayor producción de MS que el de avena en las dos fechas de secado. También se observó el efecto positivo de la fertilización nitrogenada y momento de secado más tardío sobre este parámetro. A su vez, la cobertura generada permitió un eficiente control de malezas. No se observaron efectos sobre humedad edáfica y MO en el inicio del cultivo de verano. La relación C/N fue mayor en el centeno no fertilizado y de secado tardío.

Palabras claves: cultivos de cobertura, centeno, avena, eficiencia de uso de agua, producción de materia seca, control de malezas, materia orgánica.

Key words: Cover crops, rye, oats, water use efficiency, dry matter production, weed control, organic matter.
INTRODUCCIÓN

Durante los últimos 20 años se han producido cambios importantes en los sistemas de producción agropecuaria. Si bien se incorporó la siembra directa, el incremento de la superficie sembrada con soja, la disminución de la superficie de cereales de invierno y la intensificación ganadera ha significado una importante reducción en el aporte de residuos y en los contenidos de materia orgánica (MO) del suelo, acentuándose los procesos de degradación física y de pérdidas de suelo por erosión hídrica y cólica, lo cual limita la captación y eficiencia de uso del agua.

La veranización de la agricultura en general y el avance del cultivo de soja en particular, trajo como consecuencia la realización de barbechos químicos invernales a base de Glifosato con escasa rotación de principios activos, lo cual ha generado resistencia y tolerancia en algunas malezas, tales como Sorghum halepensis, Coniza bonariensis, Lolium multiflorum, Amaranthus palmeri y Chloris, entre otras (Papa, 2008).

Por otra parte, es común que las precipitaciones ocurridas durante el ciclo de los CC excedan la capacidad de almacenaje de los suelos, perdiéndose ésta por evaporación, escorrentía y/o percolación. A esto se suma que los suelos permanecen sin cobertura durante ese período, lo que genera una baja eficiencia de barbecho. Estos bajos niveles de cobertura son debidos al escaso aporte de residuos del cultivo de soja y la baja relación carbono nitrógeno (C/N) que este posee, lo cual hace que se degrade rápidamente (Ruffo, 2003).

En este contexto, la inclusión de cultivos de cobertura (CC) en la rotación aparece como una alternativa promisoria ya que aporta residuos a la superficie que permiten atenuar la pérdida de carbono orgánico (CO) de los suelos, prevenir su erosión, aumentar la infiltración, capturar
nutrientes reduciendo la contaminación de napas por lixiviación, bajar la temperatura de los suelos disminuyendo la evaporación de agua y contribuir al control de malezas.

Los CC son establecidos entre dos cultivos de verano y no son pastoreados, incorporados, ni cosechados, sino que es interrumpido su ciclo en determinado momento por una acción química, y sus residuos queden en superficie durante un cierto periodo, protegiendo al suelo y liberando nutrientes como resultado de procesos de descomposición de la biomasa aérea y radicular de los mismos (Alvarez y Scianca, 2006).

En la elección de la especie utilizada como CC se debe considerar: (1) la tasa de descomposición de residuos de acuerdo a la relación C/N que este posea, (2) la recarga de humedad del perfil para el cultivo siguiente, (3) la rotación en la que se incluye el CC, (4) la sincronización entre la mineralización de nitrógeno acumulado en la biomasa de los CC con los requerimientos del siguiente cultivo y (5) el o los objetivos por los cuales se realiza el CC.

En los sistemas de producción de la región pampeana, se utilizan gramíneas y leguminosas de crecimiento invernal como CC. Entre las gramíneas se encuentra el centeno, la avena, la cebada, el triticale y el rye grass, mientras que entre las leguminosas principalmente las vicias y los tréboles. El centeno en la mayoría de los casos es el CC que mayor biomasa produce y aprovecha en mayor medida los excesos hídricos de otoño, mejorando la captación y la eficiencia en el uso del agua (EUA).

En los últimos años se han establecido ensayos de CC con gramíneas y leguminosas en la región subhúmeda de la provincia de Buenos Aires y la región semiárida de la provincia de La Pampa para evaluar diferentes especies en cuanto a la producción de materia seca (MS), y en
general el centeno presentó los mayores valores de producción, utilizando con mayor eficiencia el agua para producir materia seca, en comparación con avena, cebada, triticale, vicia y rye grass (Fernández et al., 2012; Scianca et al., 2007) con un volumen abundante de residuo que se descompone más lentamente que el de otras gramineas y leguminosas de invierno por la mayor relación C/N. En este sentido, Tisdale, (1991), menciona que este indicador de calidad de residuos puede tener valores entre 30/1 y 80/1 para leguminosas y gramineas, respectivamente. La relación C/N de los CC influye en la velocidad de degradación de la MS de éstos. El N actúa como regulador del proceso ya que cuanto menor es esta relación, mayor será la velocidad de descomposición de la MS y mayor será la entrega de nutrientes al cultivo siguiente. El CC sufre una descomposición gradual, rápida en los inicios del proceso, cuando se descomponen los componentes fácilmente degradables. Al agotarse éstos, quedan en descomposición sustancias resistentes como lignina y celulosa (Jensen et al., 2005).

Scianca et al. (2007), reportaron que el rendimiento de sorgo como así también de maíz fueron superiores cuando el antecesor fue centeno, seguido por triticale, vicia y rye grass, lo cual podría ser explicado por la mayor precocidad del centeno, por su tolerancia al frío y al estrés hídrico. Esta misma tendencia fue también observada en cuanto a producción de MS. Por su parte, Hoyt et al., (2004) observaron que en años secos los cultivos estivales lograron mayores rendimientos de grano cuando se utilizaron CC como antecesores.

Dentro de los principales objetivos de los CC podemos mencionar el aumento de las reservas de MO de los sistemas de producción agrícola (Follett, 2001; Dinesh, 2004; Ding et al., 2006). Por su parte Ding et al., (2005) comprobaron que la inclusión de CC afectó positivamente y en mayor grado las fracciones livianas de la MO, mejorando así las propiedades físicas del suelo.
Otro aporte de los CC es el relacionado a la mejora de la EUA, ya que los barbechos son prácticas ineficientes para el almacenamiento de agua en el suelo. En ambientes semiáridos o sub-húmedos, uno de los principales problemas para incluir los CC es su efecto potencialmente negativo sobre la disponibilidad de agua para los cultivos de cosecha (Fernández y Quiroga, 2009; Restovich et al., 2012). A esto se lo denomina costo hídrico (CH) por la realización de CC. El CH se encuentra entre 30 a 40 mm y 40 a 80 mm para leguminosas y gramíneas respectivamente, dependiendo de las precipitaciones durante el ciclo de crecimiento de los mismos (Baigorria y Cazorla, 2010). Esta variación en los contenidos de humedad con respecto a los barbechos limpios no disminuye en forma significativa el rendimiento de cultivos de cosecha posteriores según lo indicado por Fernández et al., (2010).

Por otro lado, los CC cambian las condiciones ambientales para la emergencia y crecimiento de las malezas, es decir, la presencia de cobertura modifica el ambiente térmico y lumínico sobre la superficie del suelo, disminuyendo la radiación que interceptan las malezas emergidas y la temperatura del suelo (Kruk et al., 2006). Además, tanto las malezas como los CC utilizan los mismos recursos (radiación, agua y nutrientes) para crecer; en consecuencia, en función de la habilidad competitiva de cada especie, la tasa reproductiva de las malezas puede disminuir y por lo tanto, el número de semillas que componen el banco también se reduce (Agrios, 1999).

Un aspecto importante en el manejo de los CC es la determinación de la fecha de secado de los mismos. Según Ruffo (2003) el momento de terminación del ciclo del CC debe adecuarse siguiendo dos criterios: (a) lograr una acumulación de biomasa que garantice una importante cobertura y aporte de CO; y, (b) ajustarse zonalmente a las precipitaciones de cada región para asegurar la recarga del perfil con las lluvias de primavera, para que el cultivo de cosecha
siguiente no se vea afectado. También se debe tener en cuenta para determinar el momento de secado los objetivos por los cuales se realizó el cultivo de cobertura. Si el objetivo es la permanencia del residuo del CC más allá del cultivo de verano, el secado se retrasará; mientras que si nos encontramos en la región semiárida y lo que buscamos es llegar a siembras tempranas con el perfil cargado, lo conveniente es adelantar el secado. La fecha de siembra del cultivo siguiente al CC influye de manera directa en la fecha de secado, en siembras tempranas (principios octubre) los cultivos de cobertura deberían finalizar la extracción de agua con mayor antelación, comparado a siembras tardías (diciembre). La fecha de quemado debería ser dos meses previos a la siembra del cultivo de cosecha gruesa.

Una práctica muchas veces realizada es la fertilización de los CC para lograr una mayor producción de biomasa y, de esta manera, aumentar el secuestro de CO (Follett, 2001) o bien, lograr una acumulación similar en menor tiempo, permitiendo adelantar el secado del CC y con ello alargar el barbecho posterior para mejorar la recarga del perfil, aumentando la cobertura del suelo sin afectar los contenidos de agua para el cultivo siguiente. En este sentido, Fernández et al, (2012) afirman que para cada época de secado de un cultivo de centeno hubo una importante respuesta a la fertilización nitrogenada. Además cuanto más tarde se secó el CC, mayor fue la producción de biomasa.

La fertilización nitrogenada, la fecha de quemado del CC y la fecha de siembra del cultivo posterior son las herramientas agronómicas más importantes con las que podemos intervenir para lograr un manejo adecuado en la zona en que nos encontremos y lograr alcanzar los objetivos planteados.
Por lo expuesto, la inclusión de los CC en las rotaciones es una alternativa que permite aumentar la productividad, logrando así una producción agropecuaria sustentable.

En este sentido, como objetivos del siguiente trabajo se propone estudiar los efectos de la implementación de esta práctica sobre:

- Producción de MS de los CC.
- Eficiencia en el uso del agua por parte del CC.
- Dinámica de malezas.
- Relación C/N de los distintos CC al momento del secado.
- Dinámica del CO del suelo.
- Estudiar el efecto de la fertilización nitrogenada y fecha de quemado sobre la producción de biomasa de los diferentes cultivos de cobertura.

Hipótesis:

H$_1$: En la región semiárida pampeana la utilización del centeno como CC presentaría ventajas en cuanto a producción de biomasa, frente al CC de avena, debido a la mejor captación y la eficiencia en el uso del agua, mayor tolerancia a bajas temperaturas.

H$_2$: Las fechas de quemado tardías presentarían una mayor producción de materia seca lo cual provocaría una menor emergencia de malezas.
\(H_3 \): El contenido de agua útil a la siembra del cultivo de cosecha gruesa sería similar entre los barbechos limpios y los CC quemados en septiembre, mientras que los quemados en agosto los mm de agua útil serían mayores por mayor EUA de estos tratamientos.

\(H_4 \): El contenido de Materia Orgánica (MO) no se modificará significativamente en el primer año del ensayo, aunque sí se esperarían diferencias en la relación C/N entre los distintos tratamientos.
MATERIALES Y MÉTODOS

Descripción del área de estudio.

Los ensayos se llevaron a cabo en el campo de la Facultad de Agronomía de la UNLPam, ubicado a 5 km al norte de la ciudad de Santa Rosa (LP) a una latitud de 36°32’ sur y una longitud de 64°18’ oeste, y una altitud de 210 m.s.n.m.

Desde el punto de vista climático el área de estudio se caracteriza por un clima templado con temperatura media anual de 15,5°C y medias para el mes más frío (julio) y el mes más cálido (enero) de 7°C y 24°C, respectivamente (INTA, 1980). El régimen hídrico, se caracteriza por precipitaciones medias anuales que rondan los 700 mm y se concentran principalmente en el semestre estival. La alta variabilidad interanual de las mismas es una de las principales características de las regiones áridas y semiáridas (Santanatoglia et al, 2000). Dentro del régimen climático, las heladas constituyen, junto con la sequía, uno de los factores más importantes en su acción perjudicial sobre la vegetación (Santanatoglia et al, 2000), principalmente, las otoñales y primaverales (heladas tempranas y tardías, respectivamente), debido a su variabilidad. En este sentido el período de ocurrencia de heladas se halla aproximadamente entre mediados de abril y mediados de octubre.
En el aspecto edáfico, el suelo es caracterizado como *Paleustol petrocálcico* de textura franco arenosa, con una profundidad a la tosca que oscila entre los 100 y 140 cm de profundidad. Posee régimen de humedad ústico y régimen de temperatura mesotérmico. Presenta una evolución genética con escasa diferenciación de horizontes y débil estructuración. Sus limitantes más importantes son las climáticas (semiaridez), la costra calcárea, el drenaje algo excesivo, la baja capacidad de retención de agua y la susceptibilidad a la erosión (INTA, 1980).

Descripción del ensayo.

En el ensayo, se realizó la evaluación de distintas fechas de secado de un CC de centeno y avena (Agosto y Septiembre) para una fecha hipotética de siembra de Maíz (Diciembre). Se estudió el efecto de la fertilización nitrogenada en los CC y se comparó con un testigo bajo barbecho químico (siempre limpio) y otro enmalezado (siempre sucio) hasta la fecha de siembra de maíz.

Figura 1: Diseño del ensayo.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>A</td>
<td>S</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>D</td>
</tr>
</tbody>
</table>

Figura 2: Distribución de los tratamientos
Referencias: C: centeno; A: avena; B: barbecho; F: fertilizado; T: testigo; A: secado en agosto; S: secado en septiembre; D: con malezas hasta diciembre; M: sin malezas desde marzo.

Diseño experimental.

Se utilizó un diseño en bloques completos con arreglo factorial en parcelas divididas, utilizando unidades experimentales de 270 m\(^2\) (9 m de ancho y 30 m de largo) con 4 repeticiones (bloques). Las parcelas correspondientes a los tratamientos de avena y centeno contaron con una superficie de 4320 m\(^2\), mientras que la de los barbechos fue de 2160 m\(^2\). A continuación se detalla la distribución de superficies destinadas a cada parcela.

Dimensiones totales:

Centeno: (4 unidades experimentales de 9 m * 30 m) * 4 repeticiones = 4320 m\(^2\).

Avena: (4 unidades experimentales de 9 m * 30 m) * 4 repeticiones = 4320 m\(^2\).

Barbecho: (2 unidades experimentales de 9m * 60m) * 2 repeticiones = 2160 m\(^2\).
Superficie total: 10800 m².

La siembra de los CC se llevó a cabo a mediados de marzo, en un lote proveniente de un cultivo de centeno. En los tratamientos con fertilización nitrogenada se hizo una aplicación de 50 kg.ha⁻¹ de urea a la siembra. También se realizó una fertilización base fosforada para homogeneizar los tratamientos con 50 kg.ha⁻¹ de superfósfato triple a la siembra.

Determinaciones.

Determinaciones de propiedades edáficas

Se llevaron a cabo antes de la siembra de los CC para caracterizar el lote en cuanto a su aptitud productiva. Se evaluó:

- Textura (Pipeta de Robinson) (Baver, 1956).
- Profundidad a la tosca.
- Densidad Aparente (DA).
- Retención de agua a Punto de marchitez permanente (Ollas de presión. Richard, 1948).
- Fraccionamiento de suelo de acuerdo a la técnica descripta por Cambardella y Elliott (1992) modificada por Noellemeyer *et al.* (2006), para obtener las fracciones de partículas 100-2000 µm y < 50 µm.
- CO Total (COT (<2000 µm)) y fracción lábil (COJ (fracción 50-2000 µm)) y estable (COV (fracción <50µm)) por digestión ácida con dicromato de potasio a 120 °C durante 1 hora y cuantificación colorimétrica (Soon y Abboud, 1991).
• Nitrógeno total por el método de Kjeldahl (Bremner y Mulvaney, 1982)

También se evaluó el contenido de agua útil total del perfil en distintos momentos del CC, como así también al momento de la siembra del cultivo estival. De la misma manera se hicieron evaluaciones del contenido de (COJ) para poder observar la dinámica del CO en el sistema, considerando las distintas fechas de secado, siembra y el efecto de la fertilización nitrogenada.

Determinaciones en cultivo:
• MS del CC en distintos momentos de su ciclo.
• MS de malezas a lo largo del ciclo del CC. Momentos de aparición y especies predominantes.

Medición de los parámetros estudiados:
• Humedad del suelo.

Las determinaciones de humedad del suelo se realizaron a la siembra de los cultivos de cobertura (mediados de marzo), en las fechas de secado (mediados de agosto y septiembre) y en la fecha de siembra del cultivo de Maíz (diciembre). Al momento de la siembra se evaluó la humedad inicial del suelo hasta los 120 cm de profundidad a partir de 6 muestras distribuidas en distintas zonas del ensayo.

• Producción de materia seca

En cuanto a materia seca se realizaron muestreos con aros de 0.25 m² llevándose luego a una superficie de una hectárea. La primera determinación fue al momento de la siembra de los CC en
distintos puntos del ensayo. Luego se realizaron las determinaciones correspondientes a las fechas de secado (agosto y septiembre) y al momento de la siembra del maíz (diciembre). En cada uno de los cortes se discriminó MS del CC, MS de rastros y MS de malezas, cuando se las pudo cuantificar.

- Eficiencia en el uso del agua

 Este parámetro se obtuvo a partir de la relación entre MS de los CC (y malezas en el caso de BD) y uso consuntivo (UC) de los mismos. Por su parte, este último valor surge de cuantificar la oferta hídrica durante el ciclo (Precipitaciones ocurridas durante su ciclo de crecimiento más el agua edáfica inicial) y el agua no utilizada (agua edáfica final).

- Materia orgánica del suelo

 Las determinaciones de materia orgánica (MO) del suelo se realizaron a la siembra de los CC, en la primer fecha de secado (agosto), en la segunda fecha de secado (septiembre) y a la siembra del cultivo de maíz (diciembre), extrayendo muestras en los primeros 20 cm del perfil. Se realizaron determinaciones de materia orgánica total (MOT) y materia orgánica joven (MOJ) del suelo.

- Relación C/N

 Para estas determinaciones se trabajó con las mismas muestras que se extrajeron para cuantificar producción de MS. Cabe destacar que para los análisis de C y N, las repeticiones correspondientes a cada uno de los tratamientos se trataron en conjunto, debido, por un lado, a la
gran cantidad de muestras a analizar y, por el otro, porque solo se buscaba tener una referencia de este parámetro para conocer qué residuo se estaba aportando al suelo, por lo que los resultados que se presentan en la Tabla 12 corresponden a los muestreos de agosto y setiembre.

Laborales realizadas:

- Siembra de CC. Fertilización nitrogenada (centeno y avena).
- Quemado de CC de Agosto.
- Quemado de CC de Septiembre.

Análisis estadístico.

Se realizaron Análisis de la Varianza (ANOVA) para evaluar el efecto de los tratamientos en cada variable y se utilizó el método LSD Fisher para la separación de medias. Todos los análisis estadísticos se elaboraron a partir del software estadístico InfoStat (Di Rienzo et al., 2009).

RESULTADOS Y DISCUSIÓN

Caracterización climática y edáfica del sitio.

El ensayo se llevó a cabo sobre un suelo *Paleustol petrocálcico* con textura franco arenosa (65% de arena, 23% de limo y 12% de arcilla) con una profundidad que varió entre 1.00 y 1.40 m. Al comienzo del ensayo se determinó el valor de humedad en Punto de Marchitez Permanente (PMP) obteniéndose un valor promedio cercano a 7 % a lo largo del perfil.
En cuanto a las precipitaciones ocurridas en el año del ensayo podemos mencionar que fueron ligeramente superiores a los valores promedios de los últimos 35 años, lo cual podría explicar algunos de los efectos observados en cuanto a niveles de recarga de agua del perfil y rendimientos de biomasa de los cultivos de cobertura (CC) (Tabla 1).

Tabla 1: Precipitaciones promedio (1977-2011) y precipitaciones del año 2015.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promedio 1977-2011</td>
<td>88.5</td>
<td>79.1</td>
<td>97.4</td>
<td>57.8</td>
<td>32.1</td>
<td>16.1</td>
<td>19.3</td>
<td>24.7</td>
<td>45.6</td>
<td>70.7</td>
<td>86.9</td>
<td>100.6</td>
</tr>
<tr>
<td>Pp. 2015</td>
<td>99.2</td>
<td>92.0</td>
<td>105.1</td>
<td>112.8</td>
<td>25.2</td>
<td>1.4</td>
<td>11.5</td>
<td>10.6</td>
<td>62.7</td>
<td>88.4</td>
<td>73.7</td>
<td>145.7</td>
</tr>
<tr>
<td>Diferencias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55.0</td>
<td></td>
<td></td>
<td>45.1</td>
</tr>
</tbody>
</table>

Fuente: observatorio meteorológico de la F.A de la UNLPAM.

Humedad del suelo.

Los resultados obtenidos se presentan en la Tabla 2 y arrojaron un promedio de 135 mm de agua útil y un CV menor a 7.5%, lo que indica que este parámetro al momento de la siembra no sería una fuente de variación entre los distintos tratamientos.

Tabla 2: Agua útil (mm) a la siembra de CC.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Agua útil marzo (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
</tr>
<tr>
<td>3</td>
<td>135</td>
</tr>
<tr>
<td>4</td>
<td>142</td>
</tr>
<tr>
<td>5</td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>124</td>
</tr>
</tbody>
</table>

En la segunda fecha de muestreo (fecha de secado de agosto), no se hallaron diferencias significativas entre los tratamientos con CC (Tabla 3). Por su parte, los barbechos presentaron los
mayores valores de agua útil, mostrando diferencias con todos los CC a excepción de AT. Los suelos bajo barbecho (BM y BD) no presentaron diferencias significativas entre sí, debido a que hasta este momento el crecimiento de malezas en BD no habría generado efecto sobre el agua útil de este tratamiento. Finalmente cabe aclarar que los suelos bajo CC generaron una disminución de los niveles de agua útil con respecto a marzo del orden de los 80-90 mm, mientras que en los suelos bajo barbecho, dicha disminución fue de 40-50 mm. En este último caso se debe destacar que el agua que se fue del sistema, no intervino en el proceso productivo.

Tabla 3: Agua útil (mm) en la primer fecha de secado (agosto).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Agua útil agosto (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>96 a</td>
</tr>
<tr>
<td>BM</td>
<td>86 ab</td>
</tr>
<tr>
<td>AT</td>
<td>56 bc</td>
</tr>
<tr>
<td>CT</td>
<td>43 c</td>
</tr>
<tr>
<td>AF</td>
<td>41 c</td>
</tr>
<tr>
<td>CF</td>
<td>40 c</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p<= 0,05).

Para la segunda fecha de secado (septiembre), los CC se diferenciaron significativamente del BM (Tabla 4). Este último comenzó a diferenciarse de BD, aunque no estadísticamente. Finalmente, se puede observar una tendencia de los CC secados en septiembre a presentar menores niveles de agua útil que los secados en agosto, sobre todo en el caso del centeno, que al no haber sido afectado por la ocurrencia de fuertes heladas durante fines de otoño continuó con su normal crecimiento a diferencia de la avena que disminuyó notoriamente su producción de MS.

Tabla 4: Agua útil (mm) en la segunda fecha de secado (septiembre).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Agua útil septiembre (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>161 a</td>
</tr>
<tr>
<td>BD</td>
<td>132 ab</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>ATA</td>
<td>124 b</td>
</tr>
<tr>
<td>CFA</td>
<td>122 b</td>
</tr>
<tr>
<td>AFA</td>
<td>120 b</td>
</tr>
<tr>
<td>CTA</td>
<td>115 bc</td>
</tr>
<tr>
<td>ATS</td>
<td>115 bc</td>
</tr>
<tr>
<td>AFS</td>
<td>100 bc</td>
</tr>
<tr>
<td>CFS</td>
<td>100 bc</td>
</tr>
<tr>
<td>CTS</td>
<td>83 c</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p\(\leq 0.05\)).

En diciembre (fecha de siembra del cultivo Maíz) se hallaron diferencias significativas entre BD (siempre enmalezado sin aplicación durante el ciclo de los CC) y los demás tratamientos (Tabla 5 y Figura 3). Esto puede ser explicado por el nivel de MS de las malezas (en promedio 2.400 kg.ha\(^{-1}\)) mientras que en los CC ya no había extracción de agua por parte de los mismos y en BM no hubo presencia de malezas por los controles químicos. Entre los demás tratamientos, contrariamente a los resultados de experiencias obtenidos por Quiroga et al. (2009) no se observaron diferencias significativas en el contenido de agua útil, posiblemente, debido al aporte de las precipitaciones ocurridas desde el secado de los CC hasta diciembre, lo que habría encubierto el efecto esperado de la cubierta y reducción de la evaporación del agua del suelo. Se debe destacar que si bien el suelo bajo barbecho limpio acumuló similar cantidad de agua que los suelos con CC, en estos últimos una buena parte del agua que se fue del sistema pasó por un proceso productivo que dejo distintos niveles de materia seca que aportarán a la materia orgánica del suelo. Esta MS que dejan los CC antes de la implantación del cultivo de maíz es muy importante ya que permite en muchos casos lograr una buena siembra por mayor humedad en los primeros 10 cm debido a la reducción de la evaporación por el residuo del CC, reduciendo el escurrimiento y la erosión hídrica (Wischmeier y Smith, 1958; Sasal et al., 2008).
Tabla 5: Agua útil (mm) a la siembra de cultivo Maíz (diciembre).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Agua útil diciembre (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA</td>
<td>156 a</td>
</tr>
<tr>
<td>ATS</td>
<td>156 a</td>
</tr>
<tr>
<td>AFS</td>
<td>153 a</td>
</tr>
<tr>
<td>ATA</td>
<td>152 a</td>
</tr>
<tr>
<td>CFS</td>
<td>147 a</td>
</tr>
<tr>
<td>CFA</td>
<td>146 a</td>
</tr>
<tr>
<td>BM</td>
<td>137 a</td>
</tr>
<tr>
<td>AFA</td>
<td>136 a</td>
</tr>
<tr>
<td>CTS</td>
<td>129 a</td>
</tr>
<tr>
<td>BD</td>
<td>60 b</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p<= 0,05).

Figura 3: Agua útil (mm) a la siembra de Maíz para los diferentes tratamientos.

Producción de materia seca.

Al momento de iniciar el ensayo, se determinó MS de rastrojos presentes en superficie y se obtuvo un valor promedio de aproximadamente 5000 kg.ha⁻¹ de MS de rastrojo. No se observaron diferencias significativas entre los valores hallados, lo que permite afirmar que el lote presentó homogeneidad inicial en este parámetro.
Para el muestreo de agosto (Tabla 6), se pueden observar diferencias significativas por efectos de la especie, como así también por efecto de la fertilización en el caso del centeno (Figura 4). No obstante, en avena se observa una tendencia a un mayor nivel de producción de MS debido a esta práctica de manejo. Los efectos de la fertilización nitrogenada concuerdan con Arguello et al. (2011). En cuanto al efecto de la especie, se debe recordar la acción de las heladas severas que afectaron notoriamente el crecimiento de la avena, mientras que el centeno continuó su crecimiento, prácticamente sin acusar el efecto de esta adversidad climática (Anexo - Foto 1). En este sentido, Scianca et al. (2007) también registró mayor producción de biomasa en centeno al compararlo con avena, cebada, triticale, rye grass y vicia.

Un aspecto importante a considerar es la diferencia significativa hallada entre los tratamientos bajo CC y los barbechos, debido a la disminución en los niveles de MS de rastrojos del cultivo antecesor en el caso de los CC. Esta declinación fue del orden del 10-15% en los barbechos, 50-55% en las avenas y 60-65% en los centenos. Este efecto podría deberse, en un principio, a las condiciones de mayor humedad y temperatura en el canopeo del CC, generando un microclima favorable para el desarrollo microbiano y la consecuente degradación del rastrojo.

Por último, se observó presencia de malezas solamente en BD, debido a que hasta la fecha no se llevó a cabo aplicación de agroquímicos para el control de las mismas en este tratamiento. Por su parte, los CC mostraron un buen control de malezas, debido a que no se registró presencia de las mismas. Estos resultados coinciden con lo hallado por Scianca et al., (2006).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>MS Agosto (kg.ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>MS CC</td>
</tr>
<tr>
<td>CF</td>
<td>6371 a</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>MS rastrojo</td>
</tr>
<tr>
<td>BM</td>
<td>4459 a</td>
</tr>
<tr>
<td>Tratamiento</td>
<td>MS malezas</td>
</tr>
<tr>
<td>BD</td>
<td>1507</td>
</tr>
</tbody>
</table>

Tabla 6: Materia seca correspondiente a la primera fecha de quemado de los CC.
<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>5202 b</th>
<th>BD</th>
<th>4106 a</th>
<th>CT</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AF</td>
<td>3521 c</td>
<td>AT</td>
<td>2427 b</td>
<td>BM</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AT</td>
<td>2885 c</td>
<td>AF</td>
<td>2250 b</td>
<td>AT</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BM</td>
<td>0</td>
<td>CT</td>
<td>1947 b</td>
<td>CF</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BD</td>
<td>0</td>
<td>CF</td>
<td>1818 b</td>
<td>AF</td>
<td>0</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p< 0,05).

En la segunda fecha de quemado se hallaron diferencias significativas entre los diferentes tratamientos, observándose como tendencia general que los CC de centeno presentaron una mayor producción de MS que los de avena (Figura 4) (Anexo – Foto 3 y 4). Por otra parte, se observó un efecto de la fertilización nitrogenada para las dos fechas de quemado de centeno y la segunda de avena con diferencias mayores a los 1500 kg.ha⁻¹, mientras que en el caso de la avena quemada en agosto, tales diferencias fueron de solo 500 kg.ha⁻¹ (Tabla 7).

Tabla 7: Materia seca correspondiente a la segunda fecha de quemado de los CC.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>MS CC (kg.ha⁻¹)</th>
<th>Tratamiento</th>
<th>MS rastrojos (kg.ha⁻¹)</th>
<th>Tratamiento</th>
<th>MS malezas (kg.ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>7890 a</td>
<td>ATS</td>
<td>4502 a</td>
<td>BD</td>
<td>2607</td>
</tr>
<tr>
<td>CTS</td>
<td>6104 ab</td>
<td>BM</td>
<td>4257 a</td>
<td>CTA</td>
<td>0</td>
</tr>
<tr>
<td>CFA</td>
<td>5594 bc</td>
<td>AFS</td>
<td>4054 ab</td>
<td>BM</td>
<td>0</td>
</tr>
<tr>
<td>AFS</td>
<td>5338 bc</td>
<td>ATA</td>
<td>3779 abc</td>
<td>CFA</td>
<td>0</td>
</tr>
<tr>
<td>CTA</td>
<td>4010 cd</td>
<td>CTA</td>
<td>3568 abc</td>
<td>CFS</td>
<td>0</td>
</tr>
<tr>
<td>ATS</td>
<td>3838 cd</td>
<td>BD</td>
<td>2866 bc</td>
<td>AFS</td>
<td>0</td>
</tr>
<tr>
<td>AFA</td>
<td>3364 d</td>
<td>CFS</td>
<td>2816 bc</td>
<td>ATA</td>
<td>0</td>
</tr>
<tr>
<td>ATA</td>
<td>2850 d</td>
<td>CFA</td>
<td>2802 bc</td>
<td>AFA</td>
<td>0</td>
</tr>
<tr>
<td>BD</td>
<td>0</td>
<td>CTS</td>
<td>2786 bc</td>
<td>ATS</td>
<td>0</td>
</tr>
</tbody>
</table>
En cuanto a MS de rastrojos, se puede destacar el comportamiento diferencial de los dos suelos bajo barbecho, en el sentido de que BD que presentó aproximadamente 2600 kg.ha\(^{-1}\) de MS de malezas, disminuyó notablemente los niveles de MS de rastrojo (-1240 kg.ha\(^{-1}\) de MS), posiblemente por un efecto similar al que generaron los CC. Por su parte, BM no presentó variaciones en este parámetro.

La MS de malezas mostró la misma tendencia que en el muestreo anterior, debido a que solo pudo ser cuantificada en el tratamiento BD (Anexo – Foto 5 y 6).

Otro aspecto a tener en cuenta es el referido a la eficiencia en el uso del agua (EUA). Los valores de EUA, se presentan en las Tablas 8 y 9.

Tabla 8: Uso consuntivo y EUA correspondiente a la primera fecha de quemado para los diferentes tratamientos.
<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Pp. (mm)</th>
<th>H. inicial (mm)</th>
<th>H. final (mm)</th>
<th>UC (mm)</th>
<th>MS CC (kg.ha⁻¹)</th>
<th>MS malezas (kg.ha⁻¹)</th>
<th>EUA (kg.ha⁻¹.mm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>162</td>
<td>135</td>
<td>43</td>
<td>254</td>
<td>5202</td>
<td></td>
<td>20,5 b</td>
</tr>
<tr>
<td>CF</td>
<td>162</td>
<td>135</td>
<td>40</td>
<td>257</td>
<td>6371</td>
<td></td>
<td>24,8 a</td>
</tr>
<tr>
<td>AT</td>
<td>162</td>
<td>135</td>
<td>56</td>
<td>241</td>
<td>2885</td>
<td></td>
<td>12,0 c</td>
</tr>
<tr>
<td>AF</td>
<td>162</td>
<td>135</td>
<td>41</td>
<td>256</td>
<td>3521</td>
<td></td>
<td>13,8 c</td>
</tr>
<tr>
<td>BD</td>
<td>162</td>
<td>135</td>
<td>96</td>
<td>201</td>
<td>1507</td>
<td></td>
<td>7,5 d</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p<= 0,05).

Para la primera fecha de quemado, se registraron diferencias significativas en EUA entre los diferentes CC (Figura 5). En este sentido se puede apreciar un efecto especie, ya que el centeno presentó valores muy superiores a la avena, tanto fertilizado como en el testigo. Dicho efecto era esperable si se tiene en cuenta la ocurrencia de heladas que afectaron el crecimiento de los CC de avena. En cuanto al efecto de la fertilización nitrogenada sobre este parámetro, solo se observaron diferencias significativas en centeno, mientras que en avena solo se registró una leve tendencia a favor del CC fertilizado. Resultados similares hallaron Quiroga et al., (2007) con diferentes gramíneas invernales. Los valores de UC fluctuaron entre 240-260 mm para todos los tratamientos a excepción de BD (aproximadamente 200 mm).

Tabla 9: Uso consuntivo y EUA correspondiente a la segunda fecha de quemado para los diferentes tratamientos.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Pp. (mm)</th>
<th>H. inicial (mm)</th>
<th>H. final (mm)</th>
<th>U.C. (mm)</th>
<th>MS CC (kg.ha⁻¹)</th>
<th>MS malezas (kg.ha⁻¹)</th>
<th>EUA (kg.ha⁻¹.mm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>244</td>
<td>135</td>
<td>83</td>
<td>296</td>
<td>6104</td>
<td></td>
<td>20,6 b</td>
</tr>
<tr>
<td>CF</td>
<td>244</td>
<td>135</td>
<td>100</td>
<td>279</td>
<td>7890</td>
<td></td>
<td>28,3 a</td>
</tr>
<tr>
<td>AT</td>
<td>244</td>
<td>135</td>
<td>115</td>
<td>264</td>
<td>3838</td>
<td></td>
<td>14,5 c</td>
</tr>
<tr>
<td>AF</td>
<td>244</td>
<td>135</td>
<td>100</td>
<td>279</td>
<td>5338</td>
<td></td>
<td>19,1 b</td>
</tr>
<tr>
<td>BD</td>
<td>244</td>
<td>135</td>
<td>132</td>
<td>247</td>
<td>1607</td>
<td></td>
<td>10,5 d</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p<= 0,05).
En la segunda fecha de quemado, se observó la misma tendencia que en la primera, el CF presentó la mayor eficiencia, seguido por el CT y AF (Figura 5). Se pudo apreciar también la ausencia de diferencias entre CT y AF debida a un aumento de esta última entre las dos fechas de muestreo. Por otra parte, se debe destacar que el efecto de la fertilización nitrogenada se observó tanto en centeno como en avena. Los valores de UC variaron entre 245-295 mm, aproximadamente.

Se debe destacar que las malezas presentaron una EUA inferior a la de los CC, ya que se registró un valor de 7,5 y 10,5 kg.ha$^{-1}$.mm$^{-1}$ de MS para agosto y septiembre, respectivamente. Estos menores valores de EUA por parte de las malezas son coincidentes con el trabajo de Carfagno et al. (2013) realizado en suelos de la Provincia de Buenos Aires y La Pampa con CC de centeno, avena y rye grass comparados con un barbecho como testigo.

Si se analizan las dos fechas de quemado, se puede concluir que AFA y CFA, presentaron niveles de producción de MS similares a los de ATS y CTS, por lo que el efecto de la
fertilización permitiría adelantar la fecha de quemado del CC. Esto sería importante en el caso de que la siembra del cultivo de verano fuese en octubre, ya que se podría recargar el perfil desde agosto, alargando un mes el período de barbecho. No obstante, se debe considerar que el CFS presentó los mayores valores de EUA, lo que implica en este caso que dicho CC no solo presentó los mayores valores de producción de MS a septiembre, sino que también dejó un suelo recargado de agua para la siembra, ya sea temprana como tardía de maíz.

Por último, al momento de la siembra del cultivo estival (mediados de diciembre), se observó como tendencia que los CC de centeno presentaron los mayores valores de MS en comparación con los de avena (Tabla 10) (Anexo – Foto 2). Particularmente el CFS fue el que mantuvo el mayor aporte de cobertura (6517 kg.ha\(^{-1}\) de MS), mientras que ATA fue el de menor aporte (2628 kg.ha\(^{-1}\) de MS).

En cuanto a MS de rastrojos no se observaron diferencias significativas entre los diferentes tratamientos. En este sentido se puede observar que si bien se registraron diferencias entre los tratamientos extremos (1300 kg.ha\(^{-1}\) de MS) las diferencias son menores a las observadas tanto en agosto (2700 kg.ha\(^{-1}\) de MS) como en setiembre (2000 kg.ha\(^{-1}\) de MS), si consideramos el tratamiento que presentó el mayor y el menor valor para cada fecha de muestreo.

Por otra parte, solo se pudo cuantificar MS de malezas en BD, mientras que los suelos bajo CC ejercieron un eficiente control sobre las comunidades de malezas hasta la fecha de siembra del cultivo de maíz. Finalmente, se puede agregar que la EUA por parte de las malezas al momento de cortar el crecimiento fue de 5,5 kg.ha\(^{-1}\).mm\(^{-1}\).
Tabla 10: Materia seca correspondiente a la fecha de siembra del cultivo de maíz.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>MS de CC</th>
<th>Tratamientos</th>
<th>MS rastrojo</th>
<th>Tratamientos</th>
<th>MS malezas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>6517 a</td>
<td>CTS</td>
<td>3497 a</td>
<td>BD</td>
<td>2478</td>
</tr>
<tr>
<td>CFA</td>
<td>5080 b</td>
<td>BM</td>
<td>3353 a</td>
<td>CTS</td>
<td>0</td>
</tr>
<tr>
<td>CTS</td>
<td>4545 bc</td>
<td>ATS</td>
<td>3058 a</td>
<td>CTA</td>
<td>0</td>
</tr>
<tr>
<td>AFS</td>
<td>3702 cd</td>
<td>CFA</td>
<td>2965 a</td>
<td>CFS</td>
<td>0</td>
</tr>
<tr>
<td>CTA</td>
<td>3700 cd</td>
<td>BD</td>
<td>2791 a</td>
<td>AFA</td>
<td>0</td>
</tr>
<tr>
<td>ATS</td>
<td>3412 cd</td>
<td>AFS</td>
<td>2743 a</td>
<td>AFS</td>
<td>0</td>
</tr>
<tr>
<td>AFA</td>
<td>3066 d</td>
<td>AFA</td>
<td>2713 a</td>
<td>ATA</td>
<td>0</td>
</tr>
<tr>
<td>ATA</td>
<td>2628 d</td>
<td>CFS</td>
<td>2675 a</td>
<td>ATS</td>
<td>0</td>
</tr>
<tr>
<td>BD</td>
<td>0</td>
<td>ATA</td>
<td>2655 a</td>
<td>CFA</td>
<td>0</td>
</tr>
<tr>
<td>BM</td>
<td>0</td>
<td>CTA</td>
<td>2335 a</td>
<td>BM</td>
<td>0</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p<= 0,05).

Materia orgánica del suelo

Como se puede observar en la Tabla 11 no se registraron diferencias ya sea en el muestreo de marzo (inicio del ensayo) como así tampoco en el de diciembre (siembra de maíz). Por tal motivo solo se presentan estos resultados y no los correspondientes a los muestreos de agosto y septiembre.

Los resultados obtenidos concuerdan con los de Christensen, (2001), quien afirmó que el contenido total de C en el suelo es poco probable que cambie en el corto plazo (3-4 años). No obstante, este mismo autor indica que para este periodo de tiempo se podrían registrar cambios en las fracciones más lóbiles de la MO, asociada a residuos en etapas tempranas de descomposición y ligada a las fracciones estructurales más gruesas del suelo.

Tabla 11: MOT y MOJ correspondiente a marzo y diciembre.

<table>
<thead>
<tr>
<th>Marzo</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>MOT (g.kg⁻¹)</td>
</tr>
<tr>
<td>BM</td>
<td>16,8</td>
</tr>
<tr>
<td>BD</td>
<td>15,9</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>CTA</td>
<td>16,6</td>
</tr>
<tr>
<td>CTS</td>
<td>17,5</td>
</tr>
<tr>
<td>CFA</td>
<td>16,0</td>
</tr>
<tr>
<td>CFS</td>
<td>17,8</td>
</tr>
<tr>
<td>ATA</td>
<td>15,3</td>
</tr>
<tr>
<td>ATS</td>
<td>18,2</td>
</tr>
<tr>
<td>AFA</td>
<td>16,2</td>
</tr>
<tr>
<td>AFS</td>
<td>17,1</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (LSD, p<= 0,05).

Relación C/N

Este parámetro se evaluó con el objetivo de poder caracterizar la calidad del residuo aportado por cada uno de los tratamientos de CC, debido al efecto de la especie, la fertilización nitrogenada y la fecha de quemado, por lo que los resultados que se presentan en la Tabla 12 corresponden a los muestreos de agosto y setiembre.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Relación C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA</td>
<td>27</td>
</tr>
<tr>
<td>CFA</td>
<td>24</td>
</tr>
<tr>
<td>CTS</td>
<td>36</td>
</tr>
<tr>
<td>CFS</td>
<td>33</td>
</tr>
<tr>
<td>ATA</td>
<td>24</td>
</tr>
<tr>
<td>AFA</td>
<td>22</td>
</tr>
<tr>
<td>ATS</td>
<td>32</td>
</tr>
<tr>
<td>AFS</td>
<td>28</td>
</tr>
</tbody>
</table>

En cuanto a la fecha de secado de los CC podemos observar que existe una tendencia a una mayor relación C/N en los cultivos secados en setiembre, debido principalmente a que se encontraban en etapa reproductiva (espigazón) disminuyendo la relación hoja/tallo, aumentando
así el contenido de fibra y disminuyendo la cantidad de proteína en la planta, coincidiendo estos resultados con lo hallado por Caviglia et al., 2008. Cuando se analizaron las dos especies en la misma fecha de secado se observó una menor relación C/N en el cultivo de avena debido a la mayor relación hoja/tallo que ésta presentó en comparación con el cultivo de centeno. Finalmente los CC fertilizados presentaron menor relación C/N debido a una mayor acumulación de nitrógeno en sus tejidos en comparación con los tratamientos sin fertilizar. Estos resultados concuerdan con Fernández et al., (2013) que trabajó con diferentes dosis de fertilización nitrogenada en CC de centeno comparando con un testigo sin fertilizar.

CONCLUSIONES

Para las condiciones del presente trabajo, el cultivo de cobertura de centeno presentó ventajas en cuanto a la producción de materia seca frente al de avena y en la eficiencia en el uso del agua para las dos fechas de quemado.

Todos los tratamientos bajo cultivos de cobertura lograron un eficiente control de malezas hasta el momento de la siembra tardía del cultivo de maíz, lo que permitió disminuir el uso de herbicidas en comparación con el barbecho limpio.
Al momento de la siembra del cultivo de maíz, los tratamientos bajo cultivos de cobertura, no se diferenciaron del barbecho limpio en cuanto a acumulación de agua útil. Por su parte, el barbecho enmalezado logró sólo acumular 60 mm.

Si bien no se observaron diferencias en los niveles de materia orgánica (total y joven) luego del primer ciclo de cultivos de cobertura, se esperaría que con el transcurso de los años y la acumulación de los efectos benéficos de esta práctica, se logren tales diferencias con respecto a suelos bajo barbecho.

Se debe agregar que se observaron efectos de la especie, fertilización y fecha de quemado en cuanto a la relación C/N de los residuos aportados por los cultivos de cobertura. En este sentido centenos sin fertilizar y quemados en septiembre presentaron valores de 36, mientras que en avenas fertilizadas y quemadas en agosto este parámetro fue menor (22).

Existió un efecto marcado de la fertilización nitrogenada en los distintos tratamientos, lo que generó una mayor producción de biomasa y una mejor EUA.

Todo lo mencionado, lleva a concluir que los cultivos de cobertura y sus variantes de manejo representan una herramienta viable para nuestra región como alternativa para lograr mejoras en la captación, el almacenaje y eficiencia en el uso del agua. A su vez, el aporte de materia seca, permite un eficiente control de malezas y en consecuencia una disminución en el uso de herbicidas, como así también, a partir del afecto acumulado de esta práctica, mantener o aumentar los niveles de materia orgánica joven y total del suelo, lo que generaría ventajas, no solo sobre el aporte de nutrientes al cultivo estival, sino un aporte a la sustentabilidad del sistema suelo en particular y del agroecosistema en general.
ANEXO

Foto 1: Efecto de la helada sobre crecimiento de centeno (izquierda) y avena (derecha) (Septiembre).
Foto 2: Cobertura de centeno, aporte de CO y control de malezas (Diciembre).

Foto 3: Producción de MS y control de malezas de centeno (Septiembre).
Foto 4: Producción de MS y control de malezas de centeno (Diciembre).

Foto 5: Barbecho con control y avena (Septiembre).
Foto 6: Barbecho sin control y avena (Septiembre).

BIBLIOGRAFÍA

